WireGuard-Tunnel zu FunkFeuer: Unterschied zwischen den Versionen

Aus FunkFeuer Wiki
Zur Navigation springen Zur Suche springen
 
(20 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
|name=WireGuard Tunnel für Nodes
|name=WireGuard Tunnel für Nodes
|startdate=2021/01/05
|startdate=2021/01/05
|state=Testing
|state=Proof of Concept
|desc=
|desc=
}}
}}
= TODO: WireGuard-Tunnel zu FunkFeuer =
== TODO: WireGuard-Tunnel zu FunkFeuer ==


Falls du Interesse hast, diese Idee zu einem Projekt und hoffentlich zu einem lauffähigen Produkt für die 0xFF-Gemeinschaft zu machen, mach mit und teile deine Ideen und Vorstellungen.
Falls du Interesse hast, diese Idee zu einem Projekt und hoffentlich zu einem lauffähigen Produkt für die 0xFF-Gemeinschaft zu machen, mach mit und teile deine Ideen und Vorstellungen.
Zeile 16: Zeile 16:
* Es soll eine möglichst vollautomatische Konfig über das Frontend machbar sein.
* Es soll eine möglichst vollautomatische Konfig über das Frontend machbar sein.
* Es soll IPv4 und IPv6 möglich sein.
* Es soll IPv4 und IPv6 möglich sein.
* ...


== Vorteile ==
=== Vorteile ===


* Verschlüsselung des Tunnels bei niedriger CPU-Last
* Verschlüsselung des Tunnels bei niedriger CPU-Last
* Multicore nutzung durch WG
* Tunnel ist stateless
* Tunnel ist stateless
* Software deutlich kleiner als OpenVPN
* Software deutlich kleiner als OpenVPN
* Konfig sehr einfach
* Konfig einfach - am Server komplett aus einer DB zu bauen.
* NAT Traversal, NO Client PortForwarding


== Nachteile ==
=== Nachteile ===


* für OLSRv1 muss eine Layer2-Tunneltechnik durch den Tunnel gebaut werden, da WireGuard nur Layer3 macht
* für OLSR muss eine Tunneltechnik durch den Tunnel gebaut werden, da WireGuard mit dem KEY/IP Routing sonst Probleme macht.


== Link-Sammlung ==
=== Link-Sammlung ===


* EdgeRouter WireGuard - https://github.com/WireGuard/wireguard-vyatta-ubnt
* EdgeRouter WireGuard - https://github.com/WireGuard/wireguard-vyatta-ubnt
Zeile 35: Zeile 36:
* OLSR Debian - https://repos.freiesnetz.at/
* OLSR Debian - https://repos.freiesnetz.at/


= Variante 1 =
== Netzaufbau ==
 
Remote Node kann via Wireguard verbinden und via SiteLocal ipv6 fd00 Adresse ein VXLAN aufbauen, dieses steckt in der bridge auf der OLSR läuft.
 
(SiteLocal könnte mit echter 0xFF IPv6 ersetzt werden, mir fällt jedoch kein Nutzen ein - atadxart)
 
* Wireguard Verbindung Node Public Key --> im Frontend hinterlegbar.
* SiteLocal IPv6 lässt sich zb aus NODE ID und Device ID aus dem Frontend errechnen.
* Wireguard ist zur Laufzeit konfigurierbar ohne laufende Tunnel zu stören.
* VXLAN ebenfalls zur Laufzeit konfigurierbar.
* IPv4 Sparsamkeit da nur eine IPv4 für alle Remote Nodes nötig
* Der IPv?/UDP-Wireguard/IPv6-VXLAN/IPv4 Stack ist recht dick doch da Wireguard multithread fähig ist darf mehr Durchsatz erwartet werden.
(ggü OpenVPN)
* Security - Daten Verschlüsselung, und durch Public/Private Key ist auch eine Authentifizierung gegenseitig gegeben.
 
--> Automatisierung somit vollständig möglich ohne Admin Eingriff am Tunnel-Server
 
Getestet ist es noch nicht, grundsätzlich müsste ein redundantes Tunnelserver Setup machbar sein.
 
atadxart - (werde ich noch nachliefern)
 
<pre>
<pre>
<Tunnelserver> ----------OLSR---------- <Node1>
      #-[WG/GRE/OLSR]---<Tunnelserver> ----------OLSR-------<Node1>
       |                                    |
      |                  |                                    |
  [Wireguard/VXLAN - OLSR]               |
  [OpenWRT Client]       |                                    |
       |                                    |
      |                [WG/GRE/OLSR]                         |
    <Remote Node> -----------OLSR----------#
       |                  |                                    |
      #-[WG/GRE/OLSR]---<Remote Node>-----------OLSR----------#
</pre>
</pre>
== Tunnelserver ==
* Debian 11
* OLSR von https://repos.freiesnetz.at/
* wireguard
* ifupdown2
=== /etc/network/interfaces ===
<pre>
auto lo
iface lo inet loopback
#VIRTUAL Wireless link to Node 1
# OLSR interface
auto enp1s0
iface enp1s0
  address 10.1.0.1/32
#INTERNET


auto enp2s0
== WG mit GREv6 ==
iface enp2s0 inet dhcp


#Bridge für VXLANS
Wir nutzen also von 1500 Framesize:
#OLSR Interface
{| class="wikitable" style="margin:auto"
|+ MTU bei IPv4 Tunnelverbindung
! Frame !! size !! 1500  !! DSL mit PPPoE !! Mobil
|-
|  ||  || 1500 || 1492 || 1464
|-
| IPv4 zum Tunnelserver || 20 || 1480 || 1472 || 1444
|-
| WireGuard || 40 || 1440 || 1432 || 1404
|-
| IPv6 || 40 || 1400 || 1392 || 1364
|-
| GREv6 || 4 || 1396 || 1388 || 1360
|-
| Nutzdaten || 104 || 1396 || 1388 || 1360
|}


auto br0
{| class="wikitable" style="margin:auto"
iface br0
|+ MTU bei IPv6 Tunnelverbindung
  pre-up /usr/bin/ip link add br0 type bridge
! Frame !! size !! 1500  !! DSL mit PPPoE !! Mobil
  address 10.1.1.1/32
|-
  post-up /usr/bin/ip link set br0 mtu 1356
|  ||  || 1500 || 1492 || 1464
|-
| IPv6 zum Tunnelserver || 40 || 1460 || 1452 || 1424
|-
| WireGuard || 40 || 1420 || 1412 || 1384
|-
| IPv6 || 40 || 1380 || 1372 || 1344
|-
| GREv6 || 4 || 1376 || 1368 || 1340
|-
| Nutzdaten || 124 || 1376 || 1368 || 1340
|}


#WIREGUARD
warum nicht gleich GREv6 mit IPSec?
#für alle Clients
* weil der ESP Header 52 Bytes benötigt - damit ist man mit WireGuard 12 Bytes im Vorteil.
* Und Keyverwaltung mit WireGuard ist auch einfacher Public/Private


auto wg-olsr
== Config ==
iface wg-olsr
  pre-up /usr/bin/ip link add wg-olsr type wireguard
  pre-up /usr/bin/wg setconf wg-olsr /etc/wireguard/wg-olsr.conf
 
  post-up /usr/bin/ip link set wg-olsr mtu 1420


#dieser part muss für jeden remote client ausgeführt werden
zw. Tunnelserver und Client(OpenWRT) wird ein Wireguard Tunnel aufgebaut
#Remote Node Config
  post-up /usr/bin/ip addr add fd00:00ff:0001:abba::1/64 dev wg-olsr
  post-up /usr/bin/ip link add vxlan1 type vxlan id 1 remote fd00:00ff:0001:abba::2 dstport 4789 dev wg-olsr
  post-up /usr/bin/ip link set vxlan1 up
  post-up /usr/bin/ip link set vxlan1 mtu 1356
  post-up /usr/bin/ip link set vxlan1 master br0


</pre>
Adressen aus dem IPv6 ULA Bereich [[https://www.ip-six.de/]] einen klicken bzw wird es einen generator geben TODO


=== /etc/olsrd/olsrd.conf ===
fd14:XX::1 serverseitig


Hier nur die zusätzlichen Settings
fd14:XX::2 clientseitig
<pre>
Interface "enp1s0"
{
      AutoDetectChanges      yes
      LinkQualityMult        default 1.0
      Weight                  0
}


Interface "br0"
=== Warum IPv6 ===
{
weil einfacher einzigartig zu bekommen bzw aus der nodeID zu errechnen.
      AutoDetectChanges      yes
      LinkQualityMult        default 1.0
      Weight                  0
}
</pre>


=== /etc/wireguard/wg-olsr.conf ===
In diesen WireGuard Tunnel wird nun ein GREv6 Tunnel gelegt und macht das IP/KEY Routing bei WireGuard überflüssig.
<pre>
[Interface]
ListenPort = 51820
PrivateKey = XXXXXXXXXXXXXXXXXXXXXXXXXXX


##Remote Node
=== Warum GRE ===
[Peer]
PublicKey = XXXXXXXXXXXXXXXXXXXXXXXXXXXX
AllowedIPs = fc00:ff:1:abba::2
PersistentKeepalive = 25
</pre>


== Remote Node ==
man könnte hier auch 0.0.0.0/0 verwenden bzw ::0/0 und alles direkt durch den WG Tunnel stopfen


* Debian 11
--> macht das Routing am Tunnel-Server dann kompliziert
* OLSR von https://repos.freiesnetz.at/
weiters konnte bis [[https://github.com/OLSR/olsrd/commit/fcb30aa4da732d279527feba01cacc7dc996d137]] OLSR nicht an PtP lauschen.
* wireguard
* ifupdown2


=== /etc/network/interfaces ===
Da OLSR nun an PtP Interfaces lauschen kann. Könnte man sich das nochmal genauer ansehen.
<pre>
auto enp1s0
iface enp1s0 inet dhcp


auto enp7s0
Dieser Patch ist leider noch nicht wirklich in der breite angekommen.
iface enp7s0
  address 10.3.0.1/32


auto br0
<pre style="color: red">
iface br0
wenn hier wer eine Bessere Idee hat bitte melden.
  pre-up /usr/bin/ip link add br0 type bridge
  address 10.3.1.1/32
  post-up /usr/bin/ip link set br0 mtu 1356
 
auto wg-olsr
iface wg-olsr
  pre-up /usr/bin/ip link add wg-olsr type wireguard
  pre-up /usr/bin/wg setconf wg-olsr /etc/wireguard/wg-olsr.conf
  address fd00:00ff:0001:abba::2/64
  post-up /usr/bin/ip link set wg-olsr mtu 1420
  post-up /usr/bin/ip link add vxlan1 type vxlan id 1 remote fd00:00ff:0001:abba::1 dstport 4789 dev wg-olsr
  post-up /usr/bin/ip link set vxlan1 up
  post-up /usr/bin/ip link set vxlan1 mtu 1356
  post-up /usr/bin/ip link set vxlan1 master br0
</pre>
</pre>


=== /etc/olsrd/olsrd.conf ===
== MeshMesh ==
<pre>
Interface "enp7s0"
{
AutoDetectChanges yes
LinkQualityMulti default 1.0
Weight 0
}
 
Interface "br0"
{
AutoDetectChanges yes
LinkQualityMulti default 1.0
Weight 0
}
</pre>
 
=== /etc/wireguard/wg-olsr.conf ===
<pre>
[Interface]
ListenPort = 51820
PrivateKey = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX


#tunnel server
Bei Clients mit sehr guten Uplinks macht es durchaus Sinn - Inter Node Tunnel aufzubauen - mit niedrigem Multiplier die im Fall es Ausfalls des Tunnelservers noch das Mesh weiter erhalten können
[Peer]
Endpoint = tunnelserver:51820
PublicKey = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AllowedIPs = fd00:ff:1:abba::1
PersistentKeepalive = 25
</pre>

Aktuelle Version vom 22. April 2023, 00:58 Uhr

WireGuard Tunnel für Nodes
Starttermin

05 Jan. 21

Status

Proof of Concept

Projekt


TODO: WireGuard-Tunnel zu FunkFeuer

Falls du Interesse hast, diese Idee zu einem Projekt und hoffentlich zu einem lauffähigen Produkt für die 0xFF-Gemeinschaft zu machen, mach mit und teile deine Ideen und Vorstellungen.

--> https://matrix.to/#/%230xFF-WireGuardTunnel%3Amatrix.org // #0xFF-WireGuardTunnel:matrix.org

Ziel

  • Es soll möglich sein, über WireGuard die Funktionalität des jetzigen OpenVPN-Zugangs abzubilden.
  • Es soll eine möglichst vollautomatische Konfig über das Frontend machbar sein.
  • Es soll IPv4 und IPv6 möglich sein.

Vorteile

  • Verschlüsselung des Tunnels bei niedriger CPU-Last
  • Multicore nutzung durch WG
  • Tunnel ist stateless
  • Software deutlich kleiner als OpenVPN
  • Konfig einfach - am Server komplett aus einer DB zu bauen.
  • NAT Traversal, NO Client PortForwarding

Nachteile

  • für OLSR muss eine Tunneltechnik durch den Tunnel gebaut werden, da WireGuard mit dem KEY/IP Routing sonst Probleme macht.

Link-Sammlung

Netzaufbau

      #-[WG/GRE/OLSR]---<Tunnelserver> ----------OLSR-------<Node1>
      |                  |                                    |
  [OpenWRT Client]       |                                    |
      |                 [WG/GRE/OLSR]                         |
      |                  |                                    |
      #-[WG/GRE/OLSR]---<Remote Node>-----------OLSR----------#

WG mit GREv6

Wir nutzen also von 1500 Framesize:

MTU bei IPv4 Tunnelverbindung
Frame size 1500 DSL mit PPPoE Mobil
1500 1492 1464
IPv4 zum Tunnelserver 20 1480 1472 1444
WireGuard 40 1440 1432 1404
IPv6 40 1400 1392 1364
GREv6 4 1396 1388 1360
Nutzdaten 104 1396 1388 1360
MTU bei IPv6 Tunnelverbindung
Frame size 1500 DSL mit PPPoE Mobil
1500 1492 1464
IPv6 zum Tunnelserver 40 1460 1452 1424
WireGuard 40 1420 1412 1384
IPv6 40 1380 1372 1344
GREv6 4 1376 1368 1340
Nutzdaten 124 1376 1368 1340

warum nicht gleich GREv6 mit IPSec?

  • weil der ESP Header 52 Bytes benötigt - damit ist man mit WireGuard 12 Bytes im Vorteil.
  • Und Keyverwaltung mit WireGuard ist auch einfacher Public/Private

Config

zw. Tunnelserver und Client(OpenWRT) wird ein Wireguard Tunnel aufgebaut

Adressen aus dem IPv6 ULA Bereich [[1]] einen klicken bzw wird es einen generator geben TODO

fd14:XX::1 serverseitig

fd14:XX::2 clientseitig

Warum IPv6

weil einfacher einzigartig zu bekommen bzw aus der nodeID zu errechnen.

In diesen WireGuard Tunnel wird nun ein GREv6 Tunnel gelegt und macht das IP/KEY Routing bei WireGuard überflüssig.

Warum GRE

man könnte hier auch 0.0.0.0/0 verwenden bzw ::0/0 und alles direkt durch den WG Tunnel stopfen

--> macht das Routing am Tunnel-Server dann kompliziert weiters konnte bis [[2]] OLSR nicht an PtP lauschen.

Da OLSR nun an PtP Interfaces lauschen kann. Könnte man sich das nochmal genauer ansehen.

Dieser Patch ist leider noch nicht wirklich in der breite angekommen.

wenn hier wer eine Bessere Idee hat bitte melden.

MeshMesh

Bei Clients mit sehr guten Uplinks macht es durchaus Sinn - Inter Node Tunnel aufzubauen - mit niedrigem Multiplier die im Fall es Ausfalls des Tunnelservers noch das Mesh weiter erhalten können